SL

Cheville de sécurité pour charges lourdes sur béton fissuré et non fissuré

SL-PT

Homologation ETA Option 1. Acier zingué. Anti-rotation en Polyamide.

INFORMATION DU PRODUIT

DESCRIPTION

Cheville métallique pour charges lourdes à expansion par couple de serrage contrôlé.

DOCUMENTATION OFFICIELLE

- CE-1219-CPR-0219.
- ETA 18/1108 option 1.
- · Déclaration des performances DoP SLPT.

DIMENSIONS

M6x70 à M20x240.

PLAGE DE CHARGE DE CALCUL

Desde 10,7 à 38,2 kN (non fissuré). Desde 8,1 à 26,7 kN (fissuré).

MATÉRIAU DE BASE

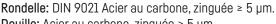
Béton de qualité C20/25 à C50/60 fissuré ou non fissuré.

rmé

HOMOLOGATIONS

- Option 1 (béton fissuré et non fissuré).
- · Résistance au feu R30-120.

18 Técnicas Expansivas S.L. Segador 13. Logroño. Spain ETA 18/1108 1219 Structural fixings in concrete


CARACTÉRISTIQUES ET AVANTAGES

- · Installation facile.
- · Utilisation sur béton fissuré et non fissuré.
- · Recommandé pour charges lourdes.
- Installation directement à travers le perçage du matériau à fixer.
- Peut se démonter en laissant la superficie diaphane (la bague d'expansion et le cône restent au fond du trou).
- Disponible sur INDEXcal.

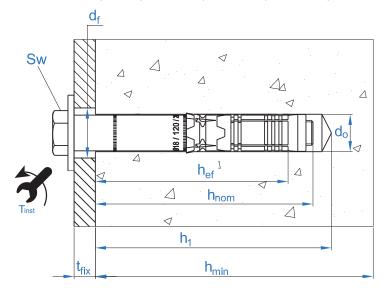
MATÉRIAUX

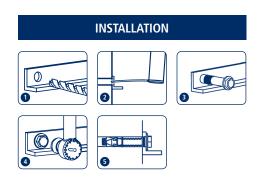
Vis SL-PT: Classe 8.8 ISO 898-1, zinguée \geq 5 μ m. Vis SL-PC: Classe 10.9 ISO 898-1, zinguée \geq 5 μ m.

Douille: Acier au carbone, zinguée $\geq 5 \mu m$. **Expanseur:** Acier au carbone, zingué $\geq 5 \mu m$. **Cône:** Acier au carbone, zingué $\geq 5 \mu m$.

Anti-rotation: Nylon.

APPLICATIONS


- Fixations structurelles sur béton en intérieurs.
- Fixation de piliers et poutres.
- Fixation de profiles, gardecorps, machines, étagères, échafaudages, supports.
- · Applications exposées à l'action du feu ou sismique.



	PROPRIÉTÉS MÉCANIQUES												
	M6 M8 M10 M12 M16 M20												
	Vis 8.8												
A_s	(mm²)	Section dans la zone filetée	20,1	36,6	58	84,3	157	245					
$f_{u,s}$	(N/mm ²)	Résistance caractéristique à la traction	800	800	800	800	800	800					
f _{y,s}	(N/mm ²)	Limite élastique	640	640	640	640	640	640					
			Vis 10	.9									
A_s	(mm²)	Section dans la zone filetée	20,1	36,6	58	84,3	157	245					
f _{u,s}	(N/mm ²)	Résistance caractéristique à la traction	1000	1000	1000	1000	1000	1000					
$f_{y,s}$	(N/mm ²)	Limite élastique	900	900	900	900	900	900					

	DONNÉES D'INSTALLATION												
MÉTRIQU	JE		M6	M8	M10	M12	M16	M20					
Code			SLPX06XXX	SLPX08XXX	SLPX10XXX	SLPX12XXX	SLPX16XXX	SLPX20XXX					
d _o	Diamètre du foret	[mm]	10	12	16	18	24	28					
T _{ins}	Couple de serrage conseillé	[Nm]	15	30	50	80	160	240					
d _f	Diamètre fixation	[mm]	12	14	18	20	26	31					
h ₁	Profondeur mininum du perçage	[mm]	70	85	95	110	130	160					
h _{nom}	Profondeur d'installation	[mm]	59	72	83	97	117	146					
h_{ef}	Profondeur effective	[mm]	50	60	70	85	100	125					
h _{min}	Profondeur min. du matériau base	[mm]	100	120	140	170	200	250					
t _{fix}	Épaisseur maximum à fixer	[mm]	L - 60	L - 75	L - 85	L - 100	L - 120	L - 150					
S _{cr,N}	Distance critique entre chevilles	[mm]	150	180	210	255	300	375					
C _{cr,N}	Distance critique au bord	[mm]	75	90	105	128	150	188					
S _{cr,sp}	Distance critique à fissuration	[mm]	205	245	285	345	410	510					
C _{cr,sp}	Distance critique au bord à fissuration	[mm]	105	125	145	175	205	255					
S _{min}	Distance min. entre chevilles	[mm]	100	120	175	200	220	320					
C _{min}	Distance minimale au bord	[mm]	50	60	70	80	100	160					
SW	Clé d'installation	SL-PT	10	13	17	19	24	30					
SW	Clé d'installation	SL-PC	4	5	6	8	10	12					

Code	PRODUITS D'INSTALLATION
	Perceuse à percussion
BHDSXXXXX	Forets pour béton
MOBOMBA	Pompe soufflante
MORCEPKIT	Écouvillon
DOMTAXX	Outil de frappe pour installation
	Clé dynamométrique
	Embouts hexagonaux

Resistance du béton de C20/25 pour une cheville isolée, sans effets de distance au bord ni distances entre chevilles

	Résistance caractéristique N _{Rk} y V _{Rk}																
			TRAC	TION							(ISAILL	EMENT				
Métrique M6 M8 M10 M12 M1				M16	M20		Métrique		M6	M8	M10	M12	M16	M20			
$N_{\rm Rk}$	Béton non fissuré	[kN]	[kN] 16,1 22,9 28,8 38,6 49,2 68,8		68,8	V_{Rk}	Béton non fissuré	[kN]	17,4	33,0	57,6	77,1	98,4	137,5			
$N_{\rm Rk}$	N_{Rk} Béton fissuré [kN] 12,		12,2	16,0	20,2	27	34,4	48,1	V_{Rk}	Béton fissuré	[kN]	12,2	32,0	40,3	54,0	68,9	96,3

	Résistance de calcul N _{Rd} y V _{Rd}																
			TRAC	TION							C	ISAILL	EMENT				
	Métrique M6 M8 M10 M12 M16 M20				M20		Métrique		M6	M8	M10	M12	M16	M20			
N_{Rd}	Béton non fissuré	[kN]	10,7	15,3	19,2	25,7	27,3	38,2	V_{Rd}	Béton non fissuré	[kN]	11,6	26,4	38,4	51,4	65,6	91,7
N_{Rd}	N _{Rd} Béton fissuré [kN] 8		8,1	10,7	13,5	18,0	22,9	26,7	$V_{\rm Rd}$	Béton fissuré	[kN]	8,1	21,3	26,9	36,0	45,9	64,2

	Charge maximale recommandée N _{rec} y V _{rec}																
			TRAC	TION							C	CISAILL	EMENT				
	Métrique			M8	M10	M12	M16	M20		Métrique			M8	M10	M12	M16	M20
$N_{\rm rec}$	Béton non fissuré	[kN]	7,7	10,9	13,7	18,4	19,5	27,3	$V_{\rm rec}$	Béton non fissuré	[kN]	8,3	18,9	27,4	36,7	46,9	65,5
$N_{\rm rec}$	N _{rec} Béton fissuré [kN] 5,8 7,6 9,6 12,9 16,4 19			19,1	$V_{\rm rec}$	Béton fissuré	[kN]	5,8	15,2	19,2	25,7	32,8	45,9				

Méthode de calcul simplifié

Évaluation Technique Européenne ETA 18/1108

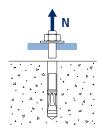
Version simplifiée de la méthode de calcul selon EC2. La résistance se calcule selon les données reflétées dans l'homologation ETA 18/1108.

- Influence de la résistance du béton.
- Influence de la distance au bord.
- · Influence de l'espace entre chevilles.
- · Influence des armatures.
- Influence de l'épaisseur du matériau de base.
- Influence de l'angle d'application de la charge.
- · Valable pour un groupe de deux chevilles.

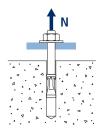
La méthode de calcul est basée sur la simplification suivante: Aucune charge différente n'agit sur des chevilles individuelles, sans excentricité.

INDEXcal

Pour un calcul plus précis qui prendrait en compte davantage de dispositions constructives, nous recommandons notre programme de calcul INDEXcal. Il est téléchargeable sur notre site www.indexfix.com

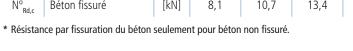


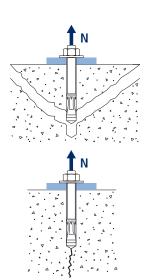
CHARGES DE TRACTION


• Résistance de calcul de l'acier:

 $\begin{array}{ll} \cdot \text{ R\'esistance de calcul par arrachement:} & N_{\text{Rd},p} &= N^{\circ}_{\text{Rd},p} \cdot \Psi_{\text{c}} \\ \cdot \text{ R\'esistance de calcul par c\^one de b\'eton:} & N_{\text{Rd},c} &= N^{\circ}_{\text{Rd},c} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,N}} \cdot \Psi_{\text{c,N}} \cdot \Psi_{\text{re,N}} \\ \cdot \text{ R\'esistance de calcul par fissuration du b\'eton:} & N_{\text{Rd},sp} &= N^{\circ}_{\text{Rd},c} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{s,sp}} \cdot \Psi_{\text{c,sp}} \cdot \Psi_{\text{re,N}} \cdot \Psi_{\text{h,sp}} \\ \end{array}$

	Résistance de calcul de l'acier											
	$N_{Rd,s}$											
	Métrique		M6	M8	M10	M12	M16	M20				
N_{Rd}^{o}	Béton non fissuré	[kN]	10,7	19,5	30,9	44,9	84,0	130,7				

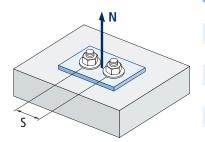



	Résistance de calcul par arrachement												
	$N_{Rd,p} = N^{\circ}_{Rd,p} \cdot \Psi_{c}$												
	Métrique M6 M8 M10 M12 M16 M20												
$N_{Rd,p}^{o}$	Béton non fissuré	[kN]	_*	-*	-*	-*	-*	-*					
$N^{o}_{_{Rd,p}}$	Béton fissuré	[kN]	-*	_*	_*	_*	_*	_*					

^{*} L'échec par arrachement n'est pas décisif.

	Résistance de calcul par cône de béton											
	$N_{Rd,c} = N^{\circ}_{Rd,c} \cdot \Psi_{b} \cdot \Psi_{s,N} \cdot \Psi_{c,N} \cdot \Psi_{re,N}$											
	Résistance de calcul par fissuration du béton*											
		$N_{Rd,sp} = N$	o _{Rd,c} • Ψ _b •	Ψ _{s,sp} • Ψ _{c,sp}	• Ψ _{re,N} • Ψ	h,sp						
	Métrique		M6	M8	M10	M12	M16	M20				
$N^{o}_{Rd,c}$	N° _{Rd,c} Béton non fissuré [kN] 11,6 15,2 19,2 25,7 27,3 38,2											
$N^{o}_{\ Rd,c}$	N° _{Rd,c} Béton fissuré [kN] 8,1 10,7 13,4 18,0 19,1 26,7											

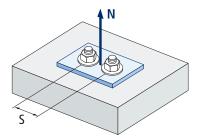
Coefficients d'influence

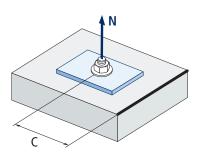


	Influe	ence de la re	ésistance du	ı béton pou	r arracheme	ent Ψ _c	
		M6	M8	M10	M12	M16	M20
	C 20/25			1,	00		
	C 30/37	1,22	1,22	1,22	1,22	1,08	1,08
Ψ _c	C 40/50	1,41	1,41	1,41	1,41	1,15	1,15
	C 50/60	1,58	1,58	1,58	1,58	1,20	1,20

4 4	
Δ Δ	
٠.	A
۵.	
. 4	· · · · · · · · · · · · · · · · · · ·
. 4	, · , · · · · · · · · · · · · · · · · ·
Δ,	
Δ	, , , , , , , , , , , , , , , , , , ,

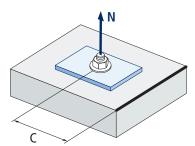
Influer	Influence de la résistance du béton pour cône du béton et fissuration de béton $\Psi_{_{b}}$												
		M6	M8	M10	M12	M16	M20						
	C 20/25			1,	00								
	C 30/37			1,	22								
Ψ_{b}	C 40/50			1,-	41								
	C 50/60			1,	55								


$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

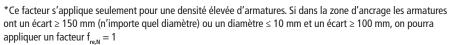

$$\Psi_{s,N} = 0.5 + \frac{s}{2 \cdot S_{cr,N}} \le 1$$

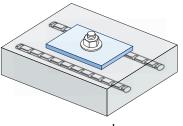
	Influen	ce distance e	ntre chevilles	(cône de bét	on) Ψ _{s,N}	
a [mana]			SL-	-PT		
s [mm]	M6	M8	M10	M12	M16	M20
100	0,83					
110	0,87					
120	0,90	0,83				
130	0,93	0,86		Valeurs no	n admises	
140	0,97	0,89				
150	1,00	0,92				
160		0,94				
175		0,99	0,92			
180		1,00	0,93			
200			0,98	0,89		
205			0,99	0,90		
210			1,00	0,91		
220				0,93	0,87	
245				0,98	0,91	
250				0,99	0,92	
255				1,00	0,93	
285					0,98	
300					1,00	
320		Valeurs sans	réduction = 1			0,93
345						0,96
375						1,00

	Influence distance entre chevilles (fissuration) $\Psi_{s,sp}$											
s [mm]			SL	-PT								
5 [111111]	M6	M8	M10	M12	M16	M20						
100	0,74											
110	0,77											
120	0,79	0,74										
130	0,82	0,77		Valeurs no	n admises							
140	0,84	0,79										
150	0,87	0,81										
160	0,89	0,83										
175	0,93	0,86	0,81									
180	0,94	0,87	0,82									
200	0,99	0,91	0,85	0,79								
205	1,00	0,92	0,86	0,80								
210		0,93	0,87	0,80								
220		0,95	0,89	0,82	0,77							
245		1,00	0,93	0,86	0,80							
250			0,94	0,86	0,80							
255			0,95	0,87	0,81							
285			1,00	0,91	0,85							
300				0,93	0,87							
320				0,96	0,89	0,81						
345			1,00 0,92									
375	Valeur	s sans réduct	ion = 1		0,96	0,87						
410					1,00	0,90						
510			1,00									


$$\Psi_{s,sp} = 0.5 + \frac{s}{2 \cdot S_{cr,sp}} \le 1$$

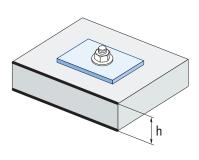
$$\Psi_{c,sp} = 0.35 + \frac{0.5 \cdot c}{C_{cr,sp}} + \frac{0.15 \cdot c^2}{C_{cr,sp}} \le 1$$


	Influen	ce distance a	u bord du bét	ton (fissuratio	on) Ψ _{c,sp}	
c [mm]			SL-	-PT		
s [mm]	M6	M8	M10	M12	M16	M20
50	0,62					
60	0,68	0,62				
70	0,75	0,68	0,63	Vale	eurs non adm	ises
75	0,78	0,70	0,65			
80	0,82	0,73	0,67	0,61		
90	0,89	0,79	0,72	0,65		
100	0,96	0,85	0,77	0,68	0,63	
105	1,00	0,88	0,79	0,70	0,65	
110	1,04	0,91	0,82	0,72	0,66	
120	1,12	0,97	0,87	0,76	0,69	
125		1,00	0,89	0,78	0,71	
128			0,91	0,80	0,72	
130			0,92	0,80	0,73	
140			0,97	0,85	0,76	
145			1,00	0,87	0,78	
150				0,89	0,80	
160				0,93	0,83	0,72
170				0,98	0,87	0,75
175				1,00	0,89	0,76
188			0,93	0,80		
205		Valeurs sans	réduction = 1		1,00	0,85
220						0,89
255						1,00


	Influence distance au bord du béton (cône de béton) $\Psi_{c,N}$											
s [mm]			SL	-PT								
5 [11111]	M6	M8	M10	M12	M16	M20						
50	0,75											
60	0,85	0,75										
70	0,95	0,83	0,75	Vale	eurs non adm	ises						
75	1,00	0,87	0,78									
80		0,91	0,82	0,72								
90		1,00	0,89	0,78								
100			0,96	0,83	0,75							
105			1,00	0,86	0,77							
110				0,89	0,80							
120				0,95	0,85							
125				0,98	0,87							
128				1,00	0,89							
130					0,90							
140					0,95							
145					0,97							
150					1,00							
160	0,88											
170		Valeur	s sans réduct	ion = 1		0,92						
175						0,95						
188		1,00										

$$\Psi_{c,N} = 0.35 + \frac{0.5 \cdot c}{C_{cr,N}} + \frac{0.15 \cdot c^2}{C_{cr,N}^2} \le 1$$

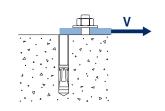
Influence d'armature $\Psi_{re,N}$										
	SL-PT									
$\Psi_{\text{re,N}}$	M6	M8	M10	M12	M16	M20				
	0,75	0,8	0,85	1,00	1,00	1,00				



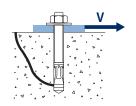
$$\Psi_{\text{re,N}} = 0.5 + \frac{h_{\text{ef}}}{200} \le 1$$

Influence de l'épaisseur du matériau de base $\Psi_{h,sp}$											
						SL-PT					
$\Psi_{h,sp}$	h/hef	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	≥3,68
ıı,sp	fh	1,00	1,07	1,13	1,19	1,25	1,31	1,37	1,42	1,48	1,50

$$\Psi_{h,sp} = \left(\frac{h}{2 \cdot h_{ef}}\right)^{2/3} \le 1.5$$

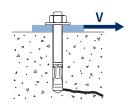

CHARGES DE CISAILLEMENT

- Résistance de calcul de l'acier sans bras de levier: $\,V_{{\rm Rd},s}\,$


 Résistance de calcul par écaillage: $V_{Rd,cp} = k \cdot N^o_{Rd,c}$

 $\cdot \text{ R\'esistance de calcul par rupture du bord de b\'eton: } \quad V_{\text{Rd,c}} = V_{\text{Rd,c}}^{\text{o}} \cdot \Psi_{\text{b}} \cdot \Psi_{\text{se,V}} \cdot \Psi_{\text{c,V}} \cdot \Psi_{\text{re,V}} \cdot \Psi_{\text{c,V}} \cdot \Psi_{\text{h,V}} \cdot \Psi_{\text{h,V}$

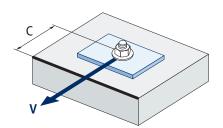
Résistance de calcul de l'acier sans bras de levier										
$V_{Rd,s}$										
Métrique		M6	M8	M10	M12	M16	M20			
$V_{\rm Rd,s}$	[kN]	16,2	26,4	49,8	60,1	89	113			

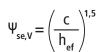


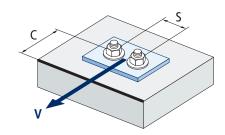
Résistance de calcul par écaillage*										
$V_{Rd,cp} = k \cdot N_{Rd,c}^{\circ}$										
Métrique	M6	M8	M10	M12	M16	M20				
k	1	2	2	2	2	2				

^{*} $N^{o}_{Rd,c}$ Résistance de calcul de traction par cône de béton

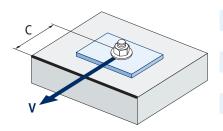
	Résistance de calcul par rupture du bord du béton										
	$V_{Rd,c} = V_{Rd,c}^{o} \cdot \Psi_{b} \cdot \Psi_{se,V} \cdot \Psi_{c,V} \cdot \Psi_{re,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{h,V}$										
Métrique M6 M8 M10 M12 M16 M20											
\/0	Béton non fissuré	[kN]	6,5	8,8	11,4	15,8	20,5	29,9			
V ^o _{Rd,c}	Béton fissuré	[kN]	4,6	6,3	8,1	11,3	14,6	21,4			

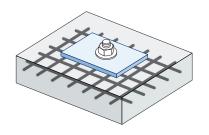

Coefficients d'influence

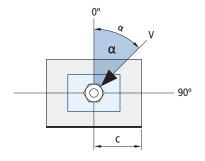

	Influence de la résistance du béton à la rupture du bord du béton $\Psi_{_{b}}$											
		M6	M8	M10	M12	M16	M20					
	C 20/25			1,0	00							
	C 30/37	1,22										
Ψ_{b}	C 40/50			1,4	41							
	C 50/60			1,!	55							



$$\Psi_b = \sqrt{\frac{f_{ck,cube}}{25}} \ge 1$$

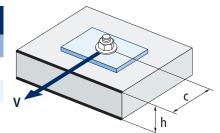

	Influence distance au bord et distance entre chevilles $\Psi_{se,V}$																	
	POUR UNE CHEVILLE																	
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	Isolé	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18
	POUR DEUX CHEVILLES																	
	c/h _{ef}	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,50	5,00
	1,0	0,24	0,43	0,67	0,93	1,22	1,54	1,89	2,25	2,64	3,04	3,46	3,91	4,37	4,84	5,33	6,36	7,45
	1,5	0,27	0,49	0,75	1,05	1,38	1,74	2,12	2,53	2,96	3,42	3,90	4,39	4,91	5,45	6,00	7,16	8,39
s/c	2,0	0,29	0,54	0,83	1,16	1,53	1,93	2,36	2,81	3,29	3,80	4,33	4,88	5,46	6,05	6,67	7,95	9,32
	2,5	0,32	0,60	0,92	1,28	1,68	2,12	2,59	3,09	3,62	4,18	4,76	5,37	6,00	6,66	7,33	8,75	10,25
	≥ 3,0	0,35	0,65	1,00	1,40	1,84	2,32	2,83	3,38	3,95	4,56	5,20	5,86	6,55	7,26	8,00	9,55	11,18


$$\Psi_{\text{se,V}} = \left(\frac{c}{h_{\text{ef}}}\right)^{1.5} \left(1 + \frac{s}{3 \cdot c}\right) \cdot 0.5 \le \left(\frac{c}{h_{\text{ef}}}\right)^{1.5}$$


$$\Psi_{c,v} = \left(\frac{d}{c}\right)^{0,20}$$

	Influence distance au bord du béton Ψ _{c,v}											
			SL	-PT								
s [mm]	M6	M8	M10	M12	M16	M20						
50	0,72											
55	0,71											
60	0,70	0,72	Valeurs non admises									
70	0,68	0,70	0,74									
80	0,66	0,68	0,72									
85	0,65	0,68	0,72	0,73								
90	0,64	0,67	0,71	0,72								
100	0,63	0,65	0,69	0,71	0,75							
105	0,62	0,65	0,69	0,70	0,74							
110	0,62	0,64	0,68	0,70	0,74							
120	0,61	0,63	0,67	0,68	0,72							
125	0,60	0,63	0,66	0,68	0,72	0,74						
128	0,60	0,62	0,66	0,68	0,72	0,74						
130	0,60	0,62	0,66	0,67	0,71	0,74						
135	0,59	0,62	0,65	0,67	0,71	0,73						
140	0,59	0,61	0,65	0,66	0,70	0,72						
150	0,58	0,60	0,64	0,65	0,69	0,71						
160	0,57	0,60	0,63	0,65	0,68	0,71						
170	0,57	0,59	0,62	0,64	0,68	0,70						
175	0,56	0,59	0,62	0,63	0,67	0,69						
180	0,56	0,58	0,62	0,63	0,67	0,69						
190	0,55	0,58	0,61	0,62	0,66	0,68						
200	0,55	0,57	0,60	0,62	0,65	0,67						
210	0,54	0,56	0,60	0,61	0,65	0,67						
220	0,54	0,56	0,59	0,61	0,64	0,66						
230	0,53	0,55	0,59	0,60	0,64	0,66						
240	0,53	0,55	0,58	0,60	0,63	0,65						
250	0,53	0,54	0,58	0,59	0,63	0,65						
260	0,52	0,54	0,57	0,59	0,62	0,64						
270	0,52	0,54	0,57	0,58	0,62	0,64						
280	0,51	0,53	0,56	0,58	0,61	0,63						
290	0,51	0,53	0,56	0,57	0,61	0,63						
300	0,51	0,53	0,56	0,57	0,60	0,62						

Influence des armatures $\Psi_{ m re, v}$							
	Sans armature en périmètre	Armature en périmètre ≥ Ø12 mm	Armature en périmètre avec étrier à ≤ 100 mm				
Béton non fissuré	1	1	1				
Béton fissuré	1	1,2	1,4				



Influence de l'angle d'application de la charge $\Psi_{oldsymbol{lpha,v}}$										
Angle, α(°)	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
Ψα,ν	1,00	1,01	1,05	1,13	1,24	1,40	1,64	1,97	2,32	2,50

$$\Psi_{\alpha,v} = \sqrt{\frac{1}{\left(\cos\alpha_v\right)^2 + \left(\frac{\sin\alpha_v}{2,5}\right)^2}} \ge 1$$

Influence de l'épaisseur du matériau de base $\Psi_{ extsf{h,v}}$										
	SL-PT									
h/c	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	≥1,5
$\Psi_{\text{h,V}}$	0,32	0,45	0,55	0,63	0,71	0,77	0,84	0,89	0,95	1,00

$$\Psi_{h,v} = \left(\frac{h}{1.5 \cdot c}\right)^{0.5} \ge 1.0$$

GAMME

Code	Dimensions	Épaisseur max à fiixer	Ø	Ø	Code	Dimensions	Épaisseur max à fiixer	đ	Ø
SLPT10070	M6 x 70 Ø10	10	50	600	SLPT18120	M12 x 120 Ø18	20	20	80
SLPT10080	M6 x 80 Ø10	20	50	600	SLPT18140	M12 x 140 Ø18	40	20	80
SLPT10100	M6 x 100 Ø10	40	50	300	SLPT18150	M12 x 150 Ø18	50	20	80
SLPT10110	M6 x 110 Ø10	50	25	150	SLPT18170	M12 x 170 Ø18	70	15	45
SLPT12080	M8 x 80 Ø12	5	50	300	SLPT18200	M12 x 200 Ø18	100	15	30
SLPT12090	M8 x 90 Ø12	15	50	200	SLPT24140	M16 x 140 Ø24	20	10	40
SLPT12100	M8 x 100 Ø12	25	50	200	SLPT24170	M16 x 170 Ø24	50	10	30
SLPT12120	M8 x 120 Ø12	45	25	200	SLPT24200	M16 x 200 Ø24	80	10	20
SLPT16100	M10 x 100 Ø16	15	25	150	SLPT24220	M16 x 220 Ø24	100	10	20
SLPT16120	M10 x 120 Ø16	35	25	100	SLPT28170	M20 x 170 Ø28	20	10	20
SLPT16140	M10 x 140 Ø16	55	20	60	SLPT28200	M20 x 200 Ø28	50	10	20
SLPT16160	M10 x 160 Ø16	75	20	60	SLPT28240	M20 x 240 Ø28	90	5	10
SLPT18110	M12 x 110 Ø18	10	20	80					

SL-PC

Code	Dimensions	Épaisseur max à fiixer	đ	đ
SLPC10070	M6 x 70 Ø10	10	50	600
SLPC10080	M6 x 80 Ø10	20	50	600
SLPC10100	M6 x 100 Ø10	40	50	300
SLPC12100	M8 x 100 Ø12	25	50	200

Code	Dimensions	Épaisseur max à fiixer	đ	đ
SLPC16100	M10 x 100 Ø16	15	25	150
SLPC16120	M10 x 120 Ø16	35	25	100
SLPC18120	M12 x 120 Ø18	20	20	80